منابع مشابه
Output Feedback Stabilization of Nonlinear Systems with Uncertain Integrators
Abstract: We present a control design to solve the global output feedback stabilization problem of a class of uncertain nonlinear systems. Each system in this class consists of some dynamic uncertainties, linear parametric uncertainties and, most importantly, output-dependent uncertain integrator gains or virtual coefficients. To solve the problem, an observer design is proposed, and the robust...
متن کاملExponential integrators
In this paper we consider the construction, analysis, implementation and application of exponential integrators. The focus will be on two types of stiff problems. The first one is characterized by a Jacobian that possesses eigenvalues with large negative real parts. Parabolic partial differential equations and their spatial discretization are typical examples. The second class consists of highl...
متن کاملVariational Integrators
V sequence fxkg. Similar result is also true for quasiNewton methods with trust region (see [16]). Another type of special quasi-Newton methods is that the quasi-Newton matrices are sparse. It is quite often that large-scale problems have separable structure, which leads to special structure of the Hessian matrices. In such cases we can require the quasiNewton matrices to have similar structures.
متن کاملNonholonomic Integrators
We introduce a discretization of the Lagrange-d’Alembert principle for Lagrangian systems with nonholonomic constraints, which allows us to construct numerical integrators that approximate the continuous flow. We study the geometric invariance properties of the discrete flow which provide an explanation for the good performance of the proposed method. This is tested on two examples: a nonholono...
متن کاملPoisson integrators
An overview of Hamiltonian systems with noncanonical Poisson structures is given. Examples of bi-Hamiltonian ode's, pde's and lattice equations are presented. Numerical integrators using generating functions, Hamiltonian splitting, symplectic Runge-Kutta methods are discussed for Lie-Poisson systems and Hamiltonian systems with a general Poisson structure. Nambu-Poisson systems and the discrete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Science
سال: 2016
ISSN: 0938-8974,1432-1467
DOI: 10.1007/s00332-016-9316-7